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Abstract: In this paper, we study the existence of oscillatory solutions to a class of second order forced neutral
dynamic equations with time delay on time scales and give several suff cient conditions for oscillation of bounded
solutions.

Key–Words:time scales; time delay; neutral; dynamic equations; oscillatory solution

1 Introduction
The theory of oscillation of neutral differential equa-
tions is rich and has wide applications, and there are
much research and abundant achievements on the the-
ory of oscillation of differential equations. In the past
ten years, oscillation and nonoscillation of dynamic
equations on time scales have aroused wide attention
of scholars at home and abroad, and the theory of time
scales is also gradually improved[1−2]. However, the
research results of oscillation of dynamic equations
with time delay on time scales is relatively little.

Agarwal et al.[3] studied the following second or-
der neutral differential equation

x∆∆
(t) + p(t)x(τ(t)) = 0, t ∈ T,

and gave several suff cient conditions for oscillation
of the above equation.

Erbe et al.[4] considered second order nonlinear
dynamic equation with time delay on time scales

[r(t)x∆(t)]∆ + p(t)f(x(τ(t))) = 0, t ∈ T,

and obtained some new suff cient conditions for en-
suring that every solution oscillates or converges to
zero by Riccati transformation techniques.

Sahiner[5] studied the oscillation of solution to the
following second order neutral dynamic equation with
time delay on time scales

[r(t)((x(t)+p(t)(x(t−τ))∆)γ ]∆+f(t, x(t−δ)) = 0, t ∈ T.

Saker[6] studied the following second order non-
linear neutral dynamic equation with time delay on
time scales

[r(t)((x(t)+p(t)(x(τ(t))∆)
γ
]
∆
+f(t, x(δ(t))) = 0, t ∈ T,

and gained several suff cient conditions for oscillation
of the above equation.

Based on the above results, we study the exis-
tence of oscillatory solution to more general neutral
equations by adding forced term, and give several suf-
f cient conditions for oscillation of bounded solutions.

In this paper, we consider the existence of bound-
ed oscillatory solutions to the forced second order
neutral dynamic equation with time delay on time s-
cales as follows

[r(t)z∆(t)]∆+

m
∑

i=1

fi(t, x(δi(t))) = h(t), t ∈ [t0,∞)T,

(1)

where z(t) = x(t)+p(t)x(τ(t)), and T is a unbound-
ed time scale.

2 Preliminaries and Lemmas
A time scale is a nonempty closed subset in the set of
real numbers R. Assuming T is a time scale, when
t < supT, we def ne forward jump operator σ : T →

T by σ(t) = inf{s ∈ T : s > t}; when t > inf T,
we def ne back jump operator ρ : T → T by ρ(t) =

sup{s ∈ T : s < t}. If σ(t) > t, we say that t ∈ T

is right-scattered; while if σ(t) = t, we say that t ∈ T

is right-dense. If ρ(t) < t, we say that t ∈ T is left-
scattered; while if ρ(t) = t, we say that t ∈ T is
left-dense. Def ning the set Tκ as following: If T has
a maximum left-scattered point M, then T

κ = T −

{M}. Otherwise Tκ = T. A function u : T → R is
right-dense continuous or rd-continuous provided it is
continuous at right-dense points inT, and its left-sided
limits exist(f nite) at left-dense points in T, denoted
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by u ∈ Crd(T). Assuming f : T → R, t ∈ T
κ. If

there is a constant α, for any ε > 0, and there is a
neighborhood UT(= U

⋂

T) of t, such that

|f(σ(t))− f(s)−α[σ(t)− s]| ≤ ε|σ(t)− s|, s ∈ UT,

then we say that f is ∆ differentiable in t, and the
derivative is α, which is def ned as f∆(t). Similarly,
we can def ne n order∆ derivative f∆n

= (f∆n−1
)∆.

Other concept and calculation on time scales can be
seen in [1-2,7].

We say that a nontrivial solution to Eq. (1) is
an oscillatory solution if it is f nally not positive
or negative, otherwise we say it a nonoscillatory
solution. If all solutions to Eq. (1) are oscillatory
solutions, then we say that the equation is oscillatory.

In this paper, we give the following assumptions:
(H1) r ∈ Crd([t0,∞)T, (0,∞)),

p ∈ Crd([t0,∞)T, [0,∞)),
h ∈ Crd([t0,∞)T, R), h(t) is bounded,

∫ +∞

t0

| h(t) | ∆t < +∞,

and ∃d > 0, s.t. r(t) ≤ d,∀t ∈ [t0,∞)T;
(H2) τ, δi ∈ Crd([t0,∞)T, [t0,∞)T), τ(t) ≤

t, δi(t) ≤ t,∀t ∈ [t0,∞)T, and lim
t→+∞

τ(t) =

lim
t→+∞

δi(t) = +∞, i = 1, 2, · · ·,m;

(H3) fi ∈ C([t0,∞)T × R,R), fi(t, x) does not

increase about x,
fi(t, x)

x
> 0(x 6= 0),∀t ∈ [t0,∞)T,

and lim
t→+∞

| fi(t, λ) |= +∞, i = 1, 2, · · ·,m, λ is an
arbitrary constant which has nothing to do with t.

3 Main Results
Theorem 1 Assuming that (H1) ∼ (H3) hold, and

m
∑

i=1

∫ +∞

t0

| fi(t, c) | ∆t = +∞,

where c is an arbitrary constant which has nothing
to do with t. Then all bounded solutions to Eq. (1)

oscillate.

Proof: Supposing that x(t) is a f nal bounded pos-
itive solution of Eq. (1)(f nal bounded negative solu-
tion can be proved in the same way), then there exists
suff cient large t1 ∈ [t0,∞)T, when t ∈ [t1,∞)T,
x(t) > 0, x(δi(t)) > 0(i = 1, 2, · · ·,m), x(τ(t)) >
0, z(t) > 0. Because x(t) is bounded, there exists
M > 0, x(t) ≤ M for arbitrary t ∈ [t1,∞)T. And

because lim
t→+∞

δi(t) = +∞, i = 1, 2, · · ·,m, there
exists t2 ∈ [t1,∞)T, for arbitrary t ∈ [t2,∞)T, 0 <
x(δi(t)) ≤ M, i = 1, 2, · · ·,m.

By Eq. (1) and (H3), when t ∈ [t2,∞)T,

[r(t)z∆(t)]∆ = −

m
∑

i=1

fi(t, x(δi(t))) + h(t)

≤ −

m
∑

i=1

fi(t,M)+ | h(t) | . (2)

By (H1), (H3), when t → +∞, the right side tends to
−∞, so [r(t)z(t)∆]∆ is f nally negative.

Integrating both sides of Eq. (2) from t2 to t

r(t)z∆(t) ≤ r(t2)z
∆
(t2)−

m
∑

i=1

∫ t

t2

fi(s,M)∆s

+

∫ t

t2

| h(s) | ∆s.

According to (H1), (H3), when t → +∞, the right
side tends to −∞, so r(t)z∆(t) is f nally nega-
tive. Also [r(t)z∆(t)]∆ is f nally negative. There-
fore, there exists t3 ∈ [t2,∞)T,M1 < 0, such that
r(t3)z

∆(t3) = M1 holds and when t ∈ [t3,∞)T,

r(t)z∆(t) ≤ r(t3)z
∆
(t3) = M1.

So z∆(t) ≤
M1

r(t)
≤

M1

d
, integrating from t3 to t,

z(t) ≤ z(t3) +
M1

d
(t− t3) → −∞(t → +∞),

and this contradicts that z(t) is f nally positive. Thus
all bounded solutions to Eq. (1) oscillate. The proof
is completed. 2

Theorem 2 Assuming that (H1) ∼ (H3) hold,
0 ≤ p(t) ≤ 1, and there exist

λ > 0, Qi ∈ Crd([t0,∞)T, R
+
), Fi ∈ Crd(R,R),

s.t.

| fi(t, x) |≥ Qi(t) | Fi(x) |,
Fi(x)

x
≥ λ,

i = 1, 2, · · ·,m and
m
∑

i=1

∫ +∞

t0

Qi(t)[1 − p(δi(t))]∆t = +∞.

Then all bounded solutions to Eq. (1) oscillate.
Proof: Supposing that x(t) is a f nal bounded posi-
tive solution to Eq. (1) (f nal bounded negative solu-
tion can be proved in the same way), then there exists
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suff cient large t1 ∈ [t0,∞)T, when t ∈ [t1,∞)T,
x(t) > 0, x(δi(t)) > 0, i = 1, 2, · · ·,m, x(τ(t)) >
0, z(t) > 0, z(t) ≥ x(t). Because x(t) is bound-
ed, there exists M > 0, x(t) ≤ M for arbitrary
t ∈ [t1,∞)T. And because lim

t→+∞

δi(t) = +∞, i =

1, 2, · · ·,m, there exists t2 ∈ [t1,∞)T, for arbitrary
t ∈ [t2,∞)T, 0 < x(δi(t)) ≤ M, i = 1, 2, · · ·,m.

From Eq. (1) and (H3), when t ∈ [t2,∞)T, we
have

[r(t)z(t)∆]∆ = −

m
∑

i=1

fi(t, x(δi(t))) + h(t)

≤ −

m
∑

i=1

fi(t,M)+ | h(t) | .

From (H1), (H3), when t → +∞, the right side
tends to −∞, so [r(t)z∆(t)]∆ is f nally negative and
r(t)z∆(t) is f nally positive or negative.

If r(t)z∆(t) is f nally negative, by [r(t)z∆(t)]∆

being f nally negative, then there exists t3 ∈

[t2,∞)T,M1 < 0, such that r(t3)z∆(t3) = M1 holds
and when t ∈ [t3,∞)T,

r(t)z∆(t) ≤ r(t3)z
∆
(t3) = M1.

So z∆(t) ≤
M1

r(t)
≤

M1

d
, integrating from t3 to t,

z(t) ≤ z(t3) +
M1

d
(t− t3) → −∞(t → +∞),

and this contradicts that z(t) is f nally positive.
If r(t)z∆(t) is f nally positive, then z∆(t) is also

f nally positive. And because z(t) is f nally positive,
lim

t→+∞

δi(t) = +∞, i = 1, 2, · · ·,m, then there
exist T1 ∈ [t1,∞)T,M2 > 0, when t ∈ [T1,∞)T,
z(δi(t)) ≥ M2, i = 1, 2, · · ·,m. From Eq. (1), one
obtains

[r(t)z∆(t)]∆ = −

m
∑

i=1

fi(t, x(δi(t))) + h(t)

≤ −

m
∑

i=1

Qi(t)Fi(x(δi(t))) + h(t)

≤ −λ

m
∑

i=1

Qi(t)x(δi(t)) + h(t)

= −λ

m
∑

i=1

Qi(t)[z(δi(t))− p(δi(t))x(τ(δi(t)))] + h(t).

For z(t) ≥ x(t), z∆(t) being f nally positive, there
exists T2 ∈ [t1,∞)T, when t ∈ [T2,∞)T, 0 <
x(τ(δi(t))) ≤ z(τ(δi(t))) ≤ z(δi(t)), i = 1, 2, ···,m.
Letting T3 = max{T1, T2}, then when t ∈ [T3,∞)T,

[r(t)z∆(t)]∆

≤ −λ

m
∑

i=1

Qi(t)[1− p(δi(t))]z(δi(t)) + h(t)

≤ −λM2

m
∑

i=1

Qi(t)[1− p(δi(t))]+ | h(t) |,

integrating from T3 to t, we have

r(t)z∆(t)

≤ r(T3)z
∆(T3)

−λM2

m
∑

i=1

∫ t

T3

Qi(s)[1− p(δi(s))]∆s

+

∫ t

T3

| h(s) | ∆s

→ −∞ (t → +∞),
and this contradicts that z∆(t) is f nally positive.
Therefore all bounded solutions to Eq. (1) oscillate.
The proof is completed. 2

4 Conclusion

In this paper, we study the existence of bounded oscil-
latory solutions to a class of second order neutral dy-
namic equations by adding forced term on time scales,
and give several suff cient conditions for oscillation of
bounded solutions.
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